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ASYMPTOTIC ANALYSIS OF THREE-DIMENSIONAL DYNAMIC EQUATIONS 
FOR THIN TWO-LAYER ELASTIC PLATES* 

I.V. SIMONOV 

In accordance with the method described in /l-3/, a derivation of 
two-dimensional equations of motion is given for a thin two-layer 
(non-symmetric) elastic plate. The mean values of the bending 
stiffness, the density, and Poisson's ratio are found, and the position 
of the middle plane is determined. In the coordinate system attached to 
this plane, the system of equations is separated into quasistatic 
equations for the longitudinal motion and a dynamic equation (of the 
ordinary kind) for the transverse component of the displacement. Unlike 
/l-3/, only one characteristic dimension in the longitudinal direction 
is introduced, which turns out to be sufficient and simplifies the 
analysis. Formulae of the complete field of stresses are provided. 
Stresses, which are of secondary importance for homogeneous plates, may 
be essential when the strength of the joint of the layers is considered. 

1. Pomlation of the problem. We shall consider a two-layer occupying a domain that is 
bounded or unbounded (in one or both directions). We denote by hi,pi,Ei, and Vi the thick- 
ness, the density of the material and the elastic characteristics of the upper layer (i =I) 
and lower layer (i = 2). We choose an orthogonal system of coordinates as sh_own in the figure. 
The xy-plane is parallel to the plane of the plate and the values z = z,, zl, z2 determine the 
plane of complete contact of the layers and the face planes of the plate. On these boundaries 
we impose the following conditions: 

where ‘zag and V = (va, v,, y) are the dimensionless components of the stress tensor and the 

displacement vector, and r:: are given fairly smooth functions of the longitudinal coordi- 
nates and time 7. We use different normalization of the functions and different scale ex- 
tension for different directions: 

uap = E,~pt u=hV, 2h = h, + h, 

(x, y) = I(& q), z = &, t = t,,~, E = h/l 

Here 1 is the least characteristic linear dimension of the pattern of deformation in the 
longitudinal direction, and to is the characteristic time defined as follows: 



where the parameter Y characterizes the variability of the state of stresses and displacements 
in time (below we consider the approximation y =O). 

The quantity 1 has, especially in dynamics, a somewhat con- 

z 
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ditional character, and often can only be estimated a posteriori. 
NeverthelesS,it is necessary to introduce it in the asymptotic 

hl 
zf 

y, .E, , v, 
analysis since the accuracy of the asymptotic equations can be 
defined only by means of the order of magnitude of the ratio 

4 / 
hll. Besides, unlike /l-3/, the least characteristic dimension 

L is considered below 
4 I 

of the plate in longitudinal directions 
only as the upper bound of I(1 < L) and does not take any 

EZG'Z part in the analysis. 
The three-dimensional dynamic equations of the theory of 

elasticity in dimensionless variables have the form (the index 
i = I, 2 is sometimes omitted) 

$+A B - e+*V2 (1 + v) Ci arr aru,=O (fJ=.&q) (1.2) 

+ + _,+ _ e”-ay ci - ‘,‘L’t’ v, =E 

A8 = 
a%~ 

-T&m+ &-$divv + eaA,B 

AL = &sdivv+*eaAq 

v = (vbv,), A = a=jap + ayaqa, div v = aVl/aE + avdaq 

rg=h,-!$+X,edivv+2p e a"6 *3' rf = (A, i- ZP*)$ + h,ediv v 

%= pL*a ( G+ 2), Tfig=p* -!$‘+e? 
i 1 

h* = v [(I - 29 (1 + v)]_‘, p* = ‘IS (1 + v)-’ 

To solve system of Eqs.(l.2), we shall use expansions of the functions being sought in 
asymptotic series in a small parameter e /l-3/ (the summation index varies from s=o to 
s= w) 

Eqs.(l.2) after substituting (1.3) can be integrated with respect to 5, which generates 

representations of the functions vf),... as partial sums of the series in powers of 5: 

XL, Tc 

(1.4) 

where K = 2m if s = 2m or s=2m+1. The index a takes the values 8, n, and 5, and 
the index p = E,n. 

From Eqs.tl.2) we obtain recursion relations for the components vf', which enables us 
to determine the components in terms of the quantities known from the foregoing approximations: 

k+l a 0’ 1 
(k+~)(k+l)$?+s+ i_-2v ,,vEk+l+ i_-2,, qy -- a divvp-"+ 

AVOW*'- 2(1 + V)Ci %~Wrv' ad =O (k=O,l,,..., K--l) 

(k + 2) (k + 1) $+B + -$&$- divviT:'+ -$&- A&') - 

(1 -1""y; -t v) Ci ,jr,c*rtm K& =O (k=O,l,...,K-2) 

(1.5) 



Moreover, we have the equations expressingthe connection between the components of the 
stresses and the coordinates of the components of the displacements obtained as a result of 
substituting expressions (1.3) and (1.4) into Hook's law 

(1.6) 

2. The case a=O, 1, E=O. Under the assumption ~(2, it follows from the system 
of Eqs.(1.2) written for the s-components of the functions without expanding them in the <- 
coordinate that 

l.$' zz vQ"d + Q$;, $' = h*L+‘, Q = (h, + 2p*)@ (2.1) 

Moreover, considering the possibility that arbitrary boundary conditions (1.1) can be satisfied, 

we obtain $' = &i =0 in the same way as in /l-3/. This means that the quantities satisfy 
the following system of relations for s = 0,1: 

Moreover, from geometrical conditions (1.1) for the join of two layers and from equalities 
(2.2) we infer that 

(1,s) 
vu0 

(2.S) =+Jl 1 (1.S) 
VP1 

(298) = VDI (2.3) 

where the digit in each superscript means that the given quantity refers to the 1st or the 2nd 
layer. Consequently, equalities (2.3) enable us to omit completely the first superscript of 
each of the above functions. 

3. Quasistatic equations for the longitudinal components of the displacement (the case 
8=2, 3, K=2). We shall dwell on the question of finding the value of v under the 
assumption that the ratios of the moduli of elasticity and of the densities of the layers do 
not introduce any new small or large parameters into the problem (otherwise, the analysis below 
would have to be modified). 

For ~(0, we obtain quasistatic equations for all components of the displacement. The 
equations hold if the external conditions change very slowly. The choice Y>O involves 
inertial terms that appear in the basic equations for both the longitudinal and the transverse 
components of the displacement. For the inertial terms to become significant in the equations 
for the longitudinal motion of the plate, the characteristic time should be commensurate with 
the time needed to traverse the length L of the plate. If to (( Lc,-' = t I, it does not matter 

whether we take the additional terms into account in the equations for the longitudinal motion 
(in practice, it is sufficient that 2t,<t,). 

In what follows we shall consider the intermediate case v = 0. The physical meaning 
of this equality is that the characteristic time to of the variablility of the state of stress 
and deformation is approximately E- 1 -fold greater than the time it takes the elastic wave to 
traverse the distance z. For harmonic oscillations of period T and of characteristic wave- 
length in the longitudinal direction h - 21, the condition y =O can be rewritten as a 
restriction for the frequency o = 2niT - 4xhc,h-'. 

For the stress normal to the plane of the plate, we have of' = c%$ +T&). This arbitrary 

behaviour of the function $' with respect to the 5 -coordinate is insufficient for arbitrary 
conditions on the face surfaces to be satisfied in the given order with respect to S. BY 
analogy with the cases of a homogeneous plate /l-3/ and a symmetric three-layer plate /2/, it 
is required that 

Zg(S) S 0, s =0,1,2,3 (3.1) 

should be set for the plates, which means that this stress is asymptotically small compared 
with the other stresses. The condition Q*) =O(S = 0, 1) obtained earlier complies with the 
Kirchhoff-Love hypothesis. The relations below follow from conditions (3.1) and Eqs. (1.5): 
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(3.2) 

yor s = 2,3, we rewrite the three conditions for the stress 9X on the face planes and 

on the plane of contact in terms of t$&, eliminating T;&a' o, a) 
and ret0 from these equations. 

We obtain the relation 

From the basic Eqs.(l.6), taking into account the last two equations in (3.2), we have 

Substituting these 
longitudinal motion 

(8-S’ $& = - z(lLV) Gdivv,, -& A$? (3.4) 

$& =&-&v~~ + $) = &-+-$Av&? 

expressions into (3.3), we obtain the required equations for the 

( t - co F2 - co 
-i=T 

i.:---5: = 

-e-) i--q G divvt' + (e- 1 ~++)Av’&+ 

68, --6: ----__eP 
1-v: 1 -vi 

$A@= -26,‘(~es)-t&?) (e=*, s=O,1) 
1 

(3.5) 

The equations for the transverse motion will be obtained in an analysis of the case 
s = 4, 5. To complete the investigations for s = 2,3, we give the formulae for the stresses 
with the greatest order of magnitude with respect to 8: 

(3.6) 

where the functions @jr are expressed in terms of (s-2) 
vCZ0 by formulae (3.4). The quantities 

I$', $4 (s = 2, 3) are higher approximations compared with the displacements w-l, v, and the 

stress 7tis) and are determined in the following step. 

4. Equations for the bending motion of the plate (the case 8=4,5). Since% @it= 0 for s < 4, 

the choice of the value x = -4 follows from the condition that the surface load is indepen- 
dent of the dimension h and the next term of the expansion of t6 in a series in e does not 

vanish. We eliminate the function zf;"' and (2, S) 
% 

on the planes 2 = z,, (j = 0, 1, 2): 
from the conditions for the stress Q 

(4.1) 

We express the components $J (k = 1, 2, 3) appearing in (4.1) in terms of vg4'. First, 

by using the equations of motion for the c-components of the displacement, we eliminate 

$+I from Hooke's law (1.6) for these quantities 



Fork = 2, and3,we obtain expressions for divv(k-') from the first two of the equations of 

motion (1.5) by replacing kS2 by k and applying the divergence operator to both sides of 
each of the equations: 

div VP-*' = (2 - v)(kv)-rA&!j 

where a consequnence of the second row of formulae (3.2) is taken into account. Using the 

equality I&;!; = 0 with k = 2,3, we find that it follows from the foregoing formulae in 
conjunction with the second and third equalities in (3.2) that 

A div vfd4', $.. = - & AA@' 

To transform the expression for the component r@, we use condition (1.1) for the 
stress 96 and equalities (3.4) and (3.6): 

rti = Ci @“uto -_:divr!"- & Adivv,+ 
c$ WO 

arr -AAvfo 
a 2(1-4) I 

We substitute into (4.1) the expressions we found for the quantities v@, and after 
some transformations we obtain the final expressions 

d,4A@+dr7- s a=uug”d - ($0 CT2 _ e$J) + 6:h-ldiv (h,r!" + e&r!l' + p&Av"') (4.3) 0 

2h* (1 - v:) - 2h= (I -vi) 

If the coordinate system is fixed so that the coefficient-associated with Au@)/@ in 
(3.5) vanishes, then the system of Eqs.(3.5) and (4.3) can be separated into a system of 
quasistatic equations for the longitudinal components of the displacements vBO@) only and 
into dynamic equations for the transverse motion in the same way as in the case of a homogeneous 
plate /3/. Using this condition one can uniquely determine the position of the middle plane. 
Namely, for the coordinate co = z,lh, we have 

hi (- 1)' 1 -v; 
h xo=e- 

1 - v; (4.4) 

The relations below follow from Eqs.(3.5): 

divAvF'=Adivvt' =-q&div(# - e#), 40 = 
C 

h,h-1 ehah-’ -1 
-+- 
1 - v"1 1-v; 1 (4.5) 

The operators A and div commute in Cartesian coordinates. Substitution of the expressions 
for div Av,,@) into Eq.(4.3) leads to independent equations for the main part of the transverse 

displacement. 
Eqs.(3.5) and (4.3) are obtained by construction to an accuracy 0 (a? from the three- 

dimensional equations of the theory of elasticity. The classical boundary conditions of the 
theory of plates constitute natural boundary conditions for these equations. The inaccuracy 
of the solutions introduced by integral conditions on the butt-ends depends, generally 
speaking, on the choice of these conditions (it is possible to state accuracy boundary con- 
ditions /4/), but in the cases considered earlier in /l-4/ it does not exceed O(E) anywhere 
in the domain of definition except for the boundary layer. For a multilayer plane this 
question calls for a separate treatment. 

Since the problem is separated, it is advisable to state formulae describing the reactions 
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caused separately by the normal load and the tangential load. In this connection, we make an 

implicit assumption about the presence of homogeneous boundary conditions for the displacements 
and their derivatives on the butt-ends of the plate. 

5. Complete systems of equations describing the fields of displacements and stresses in 

the two-dimensional theory. When only the normal load is applied ($2 = 0), the coordinates 

(I) 
%o* cd) vllov 0 t l)(.s = 0,l) of the displacement will vanish. The single equation for the transverse dis- 

placement U, = h&i and the expressions for the stresses and longitudinal displacements in 
terms of the transverse displacement written using dimensional variables have the following 
form (see formulae (1.3), (2.1), (2.2), (3.4), (3.6), (4.2) and (4.3)): 

a%&, 
D,AAu,+2hp,~=o!:)-o~~ 

D, = had&, P* = @h)-’ kh, + ~44 
a% 0) 

uP=--zap ap - 
---& v,Au,+(l-vi)% (p=r,Y) 

t C 1 

(5.1) 

Ji) 
ry = - 

3. 

M,=-DD, 
i ) 9 Q==-D~&A~, (x-y) 

M,, = -D, (I- v+) & 

v*D,= 4+6 
( $)%DI+(~-~+D., D,z~-&, 

Here we also giveexpressionsfor the bending moments and shear forces. They are obtained 
by integrating the stresses using the usual integral representations for these quantities. 
The moments are evaluated with respect to the middle plane, whose position is determined by 
formula (4.4). 

Thus, it is proved that all the relationships of the classical theory of bending are 
preserved in the coordinate system fixed according to formula (4.4) with the mean values of 
the bending stiffness D,, the density p*, and Poisson's ratio v* being used in the equation 
of motion andin theexpressions for the moments and forces in (5.1). These parameters turn 
into those of a homogeneous plate if the appropriate passages to the limit are performed. All 
the remaining formulae for the stresses and longitudinal displacements (except for the formula 
for the stress u,) are identical with the classical formulae inside each of the layers. The 
bending stresses undergo a discontinuity on the boundary between the plates, while the other 
quantities are continuous on this boundary. The behaviour as h+(P is in agreement with 
the case of a homogeneous plate. 

&-KS> uptup, oru- h-a, upr-h-', o,-_ho 

The reaction of a two-layer plate caused by a tangential load is described in the main 
part by the following system of relations. All coordinates of the displacements with the index 
s=o vanish. From formulae (1.3), (1.4), (2.2), (3.5) (3.6) and (4.2)-(4.5), we obtain 
the equations for the remaining coordinates of displacements and the expressions for the 
stresses written in dimensional form 

Au, + pV div u,, = 2q+E;’ (05” - c&‘)T. uo = hd? 
D,AAu, + 2h,,?$ = hp, divo$)- hp,div c!e' 

8% 
lLp=l&pO-Zap (P="*Y) 

(5.2) 

@ E. au 
= I 

1 - vy 
vidivuO+(l-vvi)-$ 1 
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a$‘) = h;aFtE, 2 + div 

{ 
q&i (z-zt)’ 
ZhE, (1 - vf) 

(U?’ _ op)) _ 

(2 - q) OC’ + hGi 2 (p*aP - p*oP’)} 

9*=(&q++&)-*7 p=+, Pi = PO90 - (-1)’ + 

W where a, is a vector representing tangential forces imposed on the face sides. 
Eqs.(5.2) have the same form as the analogous equations for the longitudinal motion of a 

plate given in /3/. If v1 = vp, E, = E, or hi = 0 (i = 1 or 21, the equations are completely 
identical. Variable tangential forces result in a non-vanishing longitudinal displacement, 
which obeys the second equation in (5.2). This equation differs from the dynamic equation in 
(5.1) by a free term only. For a constant tangential load, u,= 0 and the system of relation- 
ships (5.2) becomes much simpler. The order of all quantities with respect to h as h-0 is 
less by one than in the case of bending. 

The author wishes to thank M.I. Gusein-Zade for his help. 
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